Epigenetic differences between male and female bovine blastocysts produced in vitro.
نویسندگان
چکیده
Epigenetic differences between male and female bovine blastocysts provide a plausible link between physiological and gene transcription differences observed between male and female embryos. The aim of this study was to examine sex-related epigenetic differences in bovine blastocysts produced in vitro. Oocytes were matured in vitro and inseminated with frozen-thawed sex-sorted (X or Y) and unsorted (control) bull sperm. Zygotes were cultured to blastocyst stage and were analyzed for embryo sexing, mtDNA content, telomere lengths, methylation analysis, and quantification of mRNA transcripts of DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b) HMT1 hnRNP methyltransferase-like 2 (Hmt1), and interleukin enhancer binding factor 3 (Ilf3). There was a difference (P < 0.05) in the mean mtDNA copy number between male (410,000 +/- 23,000) and female (360,000 +/- 21,000) blastocysts. Telomere length was shorter in male blastocysts (P < 0.01). The level of methylation in a sequence near a variable number of tandem repeats minisatellite region [variable number of tandem repeats (VNTR)] in males (39.8% +/- 4.8) was higher than in females (23.7% +/- 3.1) (P < 0.05); however, no differences were found in other regions analyzed. Moreover, transcription differences between sexes were observed for Dnmt3a, Dnmt3b, Hmt1, and Ilf3. These results provide evidence of epigenetic differences between male and female bovine in vitro produced embryos and suggest that before initiation of gonadal differentiation, epigenetic events may modulate the difference between speed of development, metabolism, and transcription observed during preimplantation development between male and female embryos.
منابع مشابه
Sex-chromosome linked gene expression in in-vitro produced bovine embryos.
The expression of XIST, G6PD, HPRT, ZFX and ZFY were investigated in in-vitro produced bovine embryos. Transcripts of these genes were assayed by RT-PCR in pools of pre-compaction stage embryos and sexed pools of morulae and blastocysts. The expression of XIST, G6PD, HPRT and ZFX in female and male morulae and blastocysts were compared using a semi-quantitative RT-PCR. G6PD, HPRT and ZFX transc...
متن کاملP-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization
Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...
متن کاملIn vitro production of bovine embryos using flow-cytometrically sexed sperm
The investigation aimed to compare the effect of fresh and frozen-thawed X and Y fractions of flowcytometrically sorted bovine spermatozoa on in vitro fertilization of bovine in vitro matured oocytes and subsequent blastocyst development. Sperm cells sorted in MoFloSX cytometer were used either for IVF or frozen and stored in liquid nitrogen. Immature oocytes recovered from ovaries of slaughter...
متن کاملCharacterization of X-Chromosome Gene Expression in Bovine Blastocysts Derived by In vitro Fertilization and Somatic Cell Nuclear Transfer
To better understand X-chromosome reactivation (XCR) during early development, we analyzed transcriptomic data obtained from bovine male and female blastocysts derived by in-vitro fertilization (IVF) or somatic-cell nuclear transfer (SCNT). We found that X-linked genes were upregulated by almost two-fold in female compared with male IVF blastocysts. The upregulation of X-linked genes in female ...
متن کاملGene silencing during development of in vitro-produced female bovine embryos.
In early development, female embryos (XX) produce twice the transcripts of X-linked genes compared with male embryos (XY). During the course of development, inactivation of the X chromosome equilibrates gene dosage, making the development of female embryos viable. Moreover, the biotechnologies used for producing embryos in vitro seem to work better with male embryos, making it easier for them t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2008